

PRODUCT SPECIFICATION

128*64 Graphic COB LCD MODULE MODEL: LT-12864B3-801 Ver:1.0

< \bigcirc > Finally Specification

	CUSTOMER'	S APPROVAL
CUSTOMER :		
SIGI	NATURE:	DATE:

APPROVED	РМ	PD	PREPARED
BY	REVIEWD	REVIEWD	Ву

Prepared By: LEADER TIME SRL VIA MONS. PROSDOCIMI, 27 36042 BREGANZE (VI)

I This specification is subject to change without notice. Please contact LT or it's representative before designing your product based on this specification.

Issued Date: 2010/6/28 **Doc. No.:**

Revision Status

Version	Revise Date	Page	Content	Modified By		
Ver. 1.0	2010-6-28		First Issued			

Table of Contents

No.

Contents

Page

1. FEATURES4
2. MECHANICAL SPECIFICATIONS4
3. ELECTRICAL SPECIFICATIONS4
4. TERMINAL FUNCTIONS AND BLOCK DIAGRAM
5. TIMING CHARACTERISTICS
6. COMMAND LIST
7. QUALITY SPECIFICATIONS
8. RELIABILITY
9. HANDLING PRECAUTION17
10. OUTLINE DIMENSION

1. Features

The features of LCD are as follows

- * Display mode : STN/ Blue/Transmissive/Negative
- * Drive IC : SBN6400G& SBN0064G
- * Display format : 128x64 Dots
- * Interface Input Data : 8 -bit
- * Driving Method : 1/64 Duty, 1/9 Bias
- * Viewing Direction : 6 O'clock
- * Backlight
- : LED/ White
- *Sample NO.
- : EY1206P3SGW6B-1.0/20100625

2. MECHANICAL SPECIFICATIONS

ltem	Specification	Unit
Module Size	78(W) x 70(H) x 12.0Max (D)	mm
Number of Dots	128x 64 Dots	-
View display area	62.00(H) x 44.00 (V)	mm
Activty Display Area	56.28(H) x 38.36 (V)	mm
Dot Size	0.4 (H) x 0.56(V)	mm
Dot Pitch	0.44(H) x 0.6(V)	mm

3. ELECTRICAL SPECIFICATIONS

3-1 ABSOLUTR MAZIMUM RATINGS (Ta = 25 °C)

ltem	Symbol	Symbol			••••	
nem	Symbol	Min.	Тур.	Max.	Unit	
Supply Voltage For Logic	Vdd	-0.3	-	7.0	V	
Supply Voltage For LCD Drive	V _{LCD}	0	-	13	V	
Input Voltage	Vin	-0.3	-	VDD+0.3	V	
Operating Temp.	Тор	-20	-	+70	°C	
Storage Temp.	Tst	-30	-	+80	°C	

*. NOTE: The response time will be extremely slow when the operating temperature is around -10°C, and the back ground will become darker at high temperature operating.

3-2 ELECTRICAL CHARACTERISTICS

lten	n	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Logic supply	y Voltage	Vdd - Vss		4.5	5.0	5.5	V
LCD D	LCD Drive		Ta = 25 °C	12.3	12.6	12.9	V
Input	"H" Level	V _{IH}	14 - 20 0	Vdd-2.2	-	Vdd	V
Voltage	"L" Level	V _{IL}	$VDD=5V\pm10\%$	0	-	0.8	V
Frame Frequency		f _{FLM}	1	-	78	-	Hz
Current con	sumption	I _{DD}		-	1.6	-	mA

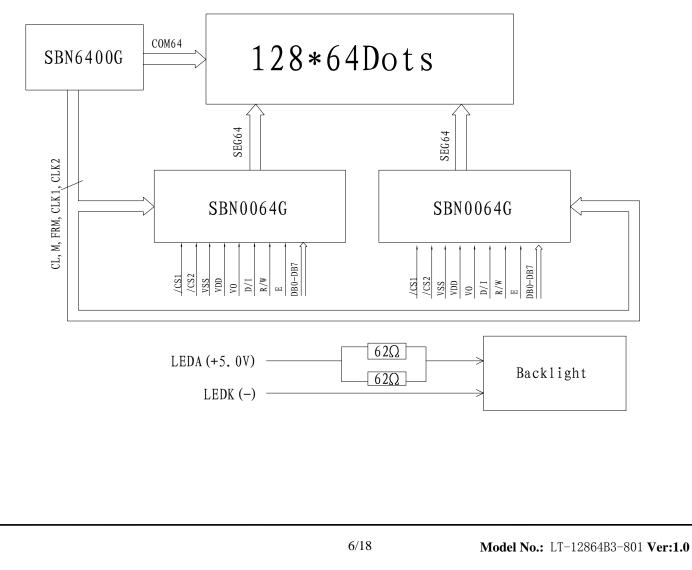
3-3. BACKLIGHT

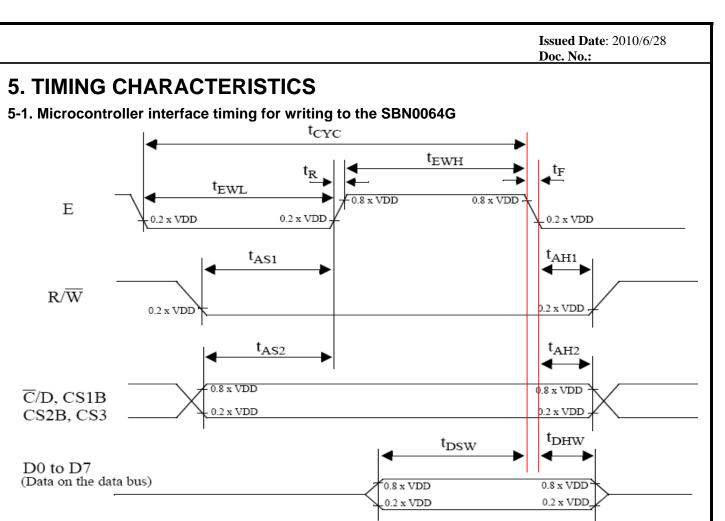
3-3-1. Absolute Maximum Ratings

ltem	Symbol	Condition	Min.	Тур.	Max.	Unit
Forward Current	IF		-	-	60	mA
Reverse Voltage	VR	Ta = 25 °C	-	-	5	V
Power Dissipation	PD		-	-	198	mW

3-3-2. Electrical-optical Characteristics

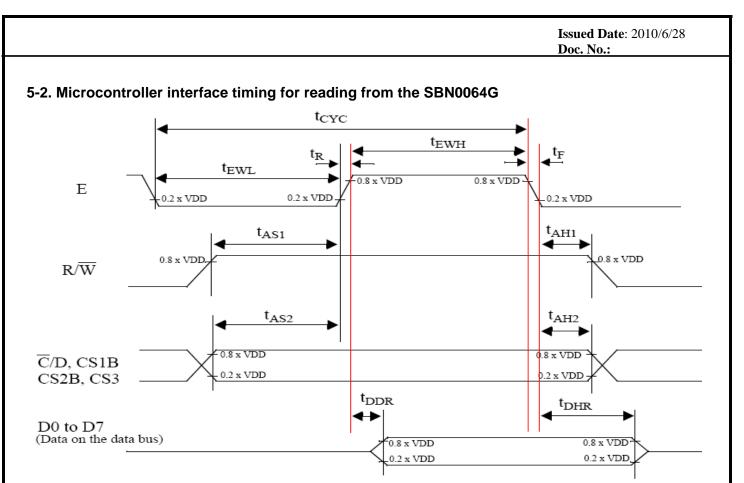
Symbol	Condition	м	in.	Ту	/p.	Ма	ax.	Unit
VF		2	.9	3	.1	3	.3	V
lv	If=60mA	3	00		-		-	cd/m ²
-		X 0.26	Y	X 0.28	Y 0.28	X 0.31	Y 0.31	-
	VF Iv	VF Iv If=60mA Ta = 25 °C	$ \begin{array}{c c} VF \\ \hline VF \\ \hline VF \\ \hline Iv \\ Ta = 25 ^{\circ}C \\ \hline X \\ \hline \end{array} $	$ \begin{array}{c c} VF \\ IV \\ If=60mA \\ Ta = 25 ^{\circ}C \\ \hline X \\ Y \end{array} $	$\begin{array}{c c} VF \\ IV \\ If=60mA \\ Ta = 25 \ ^{\circ}C \end{array} \begin{array}{c} 2.9 \\ 300 \\ \hline X \\ Y \\ X \end{array}$	VF 2.9 3.1 Iv If=60mA 300 - Ta = 25 °C X Y X	VF 2.9 3.1 3.1 Iv If=60mA 300 - - Ta = 25 °C X Y X Y X	VF 2.9 3.1 3.3 Iv If=60mA 300 - - Ta = 25 °C X Y X Y X Y


The brightness is measured without LCD panel


4. TERMINAL FUNCTIONS AND BLOCK DIAGRAM

4-1. INTERFACE PIN FUNCTION DESCRIPTION

PIN NO.	SYMBOL	FUNCIONS
1	/CS1	Chip selection signal
2	/CS2	
3	VSS	Ground
4	VDD	Supply voltage for logical circuit
5	V0	Supply voltage for LCD driving
6	D/I	Select register signal
7	R/W	Select read or write sigal
8	ш	Enable singal
9~16	DB0~DB7	Date Bus
17	NC	No connection
18	NC	No connection
19	LEDA	Backlight(+5.0V)
20	LEDK	Backlight(-)


4-2. BLOCK DIAGRAM

 V_{DD} = 5 V ±10%; V_{SS} = 0 V; T_{amb} = -20 °C to +75°C.

symbol	parameter	min.	max.	test conditions	unit
t _{CYC}	Enable (E) cycle time	1000			
t _{EWL}	Enable (E) LOW width	450			
t _{EWH}	Enable (E) HIGH width	450			1
t _R	Enable (R) rise time		20		1
t _F	Enable (F) fall time		20		1
t _{AS1}	Write set-up time	140			ns
t _{AH1}	Write hold time	10			1
t _{AS2}	C/D, CS1B, CS2B, CS3 set-up time	140			1
t _{AH2}	C/D, CS1B, CS2B, CS3 hold time	10			1
t _{DSW}	Data setup time (on the data bus)	200		The loading on	1
t _{DHW}	Data hold time (on the data bus)	10		the data bus is shown in Fig. 18.	

V_{DD} = 5 V ±10%; V_{SS} = 0 V; T_{amb} = -20 °C to +75°C.

symbol	parameter	min.	max.	test conditions	unit
t _{CYC}	Enable (E) cycle time	1000			
t _{EWL}	Enable (E) LOW width	450			1
t _{EWH}	Enable (E) HIGH width	450			1
t _R	Enable (R) rise time		20]
t _F	Enable (F) fall time		20		1
t _{AS1}	READ set-up time	140			ns
t _{AH1}	READ hold time	20			
t _{AS2}	C/D, CS1B, CS2B, CS3 set-up time	140]
t _{AH2}	C/D, CS1B, CS2B, CS3 hold time	10]
t _{DDR}	Data delay time (on the data bus)	320		The loading on	1
t _{DHR}	Data hold time (on the data bus)	20		the data bus is shown in Fig. 18.	

D0(LSB)

D0

6. COMMAND LIST

Register Name	Description	States after RESET
Display ON/OFF Register	The Display ON/OFF Register is a 1-bit register. After RESET, its value is LOW and, therefore, the LCD display is turned OFF.	0
Display Start Line Register	The Display Start Line Register is a 6-bit register. After RESET, its value is 00 0000 and, therefore, Row 0 of the Display Data Memory is mapped to COM0 of LCD panel.	00 0000
Page Address Register	The Page Address Register is a 3-bit register. It point to a page of the Display Data Memory.	ххх
Column Address Register	The Column Address Register is a 6-bit register.	XX XXXX
Status Register	The Status Register shows the current state of the SBN0064G. It is a 3-bit register, with each bit showing the status of a programmed function.	0010 0000

6.1 Display ON/OFF Register

C	/D	R/			
0		(
D7(MSB)	D6	D5	D4	D3	
0	0	1	1	1	

6.2 Display Start Line Register

C/	/D	R/	W				
()	()				
D7(MSB)	D6	D5	D4	D3	D2	D1	D0(LSB)
1	1	A5	A4	A3	A2	A1	A0

D2

1

D1

1

A5 \sim A0 are Display Start Line address bits and can be programmed with a value in the range from 0 to 63. Therefore, the code can be from 1100 0000 (C0 Hex) to 1111 1111 (FF Hex).

6.3 Page Address Register

	D7(MSB)	D6	D5	D4	D3	D2	D1	D0(LSB)
I	1	0	1	1	1	A2	A1	A0

A2, A1and A0 are page address bits and can be programmed with a value in the range from 0 to 7. A2 A1 A0=000 selects Page 0; A2 A1 A0=001 selects Page 1; A2 A1 A0=010 selects Page 2, and A2 A1 A0=011 selects Page 3...etc. Therefore, the code can be from 1011 1000 (B8 Hex) to 1011 1111 (BF Hex).

6.4 Column Address Register

D7(MSB)	D6	D5	D4	D3	D2	D1	D0(LSB)
0	1	A5	A4	A3	A2	A1	A0

A5~A0 are column address bits and can be programmed with a value in the range from 0 to 63. Therefore, the code can be from 0100 0000 (40 Hex) to 0111 1111 (7F Hex).

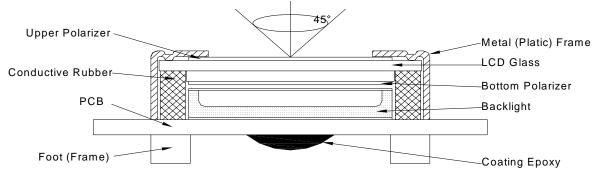
6.5 Status Read and Status Register

C,	C/D R/W						
()		1]			
D7(MSB)	D6	D5	D4	D3	D2	D1	D0(LSB)
BUSY	0	ON/OFF RESET		0	0	0	0

Issued Date: 2010/6/28 **Doc. No.:**

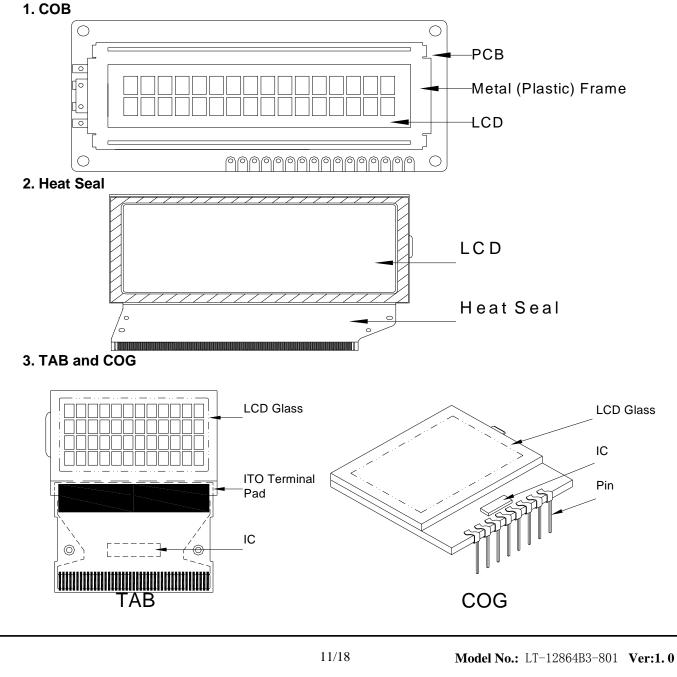
Bit	Description						
BUSY	BUSY=1 indicates that the SBN0064G is currently busy and can not accept new code or data. The SBN0064G is executing an internal operation.						
	BUSY=0 indicates that the SBN0064G is not busy and is ready to accept new code or data.						
ON/OFF	The ON/OFF bit indicates the current of status of display.						
	If ON/OFF=0, the display has been turned ON.						
	If ON/OFF=1, the display has been turned OFF.						
	Note that the polarity of this bit is inverse to that of the Display ON/OFF Register.						
RESET	RESET=1 indicates that the SBN0064G is currently in the process of being reset.						
	RESET=0 indicates that the SBN0064G is currently in normal operation.						

6.7 READ/WRITE operation


Operation	DATA					Description			
	D7	D6	D5	D4	D3	D2	D1	D0	*
Write Display Data		Data to be written into the Display Data Memory.					olay D	ata	Write a byte of data to the Display Data Memory. The data to be written is put on the data bus by the host microcontroller.
Read Display Data	1	Data read from the Display Data Memory output latch.					ta		Read a byte of data from the Display Data Memory. The data read from the internal 8-bit output latch (refer to Fig. 12) appears on the data bus. A dummy read is needed to get correct value.
The setting of the conti	rol bus	s for V	Vrite	Displa	ay Da	ta op	eratio	n	
C/D	C/D R/W								
1		0							
The setting of the control bus for Read Display Data command									

1	1
C/D	R/W
I he setting of the control bus f	or Read Display Data comma

Issued Date: 2010/6/28 **Doc. No.:**


. QUALITY SPECIFICATIONS

- 7-1. LCM Appearance and Electric inspection Condition
 - 1. Inspection will be done by placing LCM 30cm away from inspector's eyeballs under normal illumination.

2. View Angle: with in 45° around perpendicular line.

7-2. Definition

7-3. Sampling Plan and Acceptance 1.Sampling Plan

MIL - STD - 105E (\parallel) ordinary single inspection is used.

2.Acceptance		
Major defect:	AQL = 0.25%	
Minor defect:	AQL = 0.65%	

7-4. Criteria

1.COB

Defect	Inspection Item	Inspection Standards	
Major	PCB copper flakes peeling off	B copper flakes peeling off Any copper flake in viewing Area should be greater than 1.0mm ²	
Major	Height of coating epoxy	Exceed the dimension of drawing	Reject
Major	Void or hole of coating epoxy	Expose bonding wire or IC	Reject
Major	PCB cutting defect	Exceed the dimension of drawing	Reject

2.SMT

Defect	Inspection Item	Inspection Standa	ards
Minor	Component marking not readable		Reject
Minor	Component height	Exceed the dimension Of drawing	Reject
Major	Component solder defect (missing , extra, wrong component or wrong orientation		Reject
Minor	Component position shift x component soldering pad x \rightarrow x \rightarrow x \rightarrow y	X < 3/4Z Y > 1/3D	Reject Reject
Minor	Component tilt component D soldering pad	Y > 1/3D	Reject
Minor	Insufficient solder component θ PAD PCB	<i>θ</i> ≤ 20°	Reject

3. Metal (Plastic) Frame Defect **Inspection Item Inspection Standards** Anywhere Major Crack / breakage Reject Acceptable of W L Scratch w<0.1mm Any Ignore 0.1<u><</u>w<0.2mm L<5.0mm 2 L<u><</u>3.0mm 0.2<u><</u>w<0.3mm 1 Minor Frame Scratch w<u>></u>0.3mm Any 0 Note : 1. Above criteria applicable to scratch lines with distance greater than 5mm. 2. Scratch on the back side of frame (not visible) can be ignored . Acceptable of Dents / Pricks $\Phi \leq 1.0$ mm 2 Frame Dent, Prick 1.0<⊕<u><</u>1.5mm 1 Minor $\Phi = \frac{L + W}{2}$ 1.5mm< Φ 0 Note : 1. Above criteria applicable to any two dents pricks with distance greater than 5mm 2. Dent / prick on the back side of frame (not visible) can be ignored Frame Deformation Exceed the dimension of drawing Minor Metal Frame Oxidation Minor Any rust

4. Flexible Film Connector (FFC)

Defect	Inspection Item	Inspection Standards				
Minor	Tilted soldering	Tilted soldering Within the angle +5°				
Minor	Uneven solder joint /bump		Reject			
		Expose the conductive line	Reject			
Minor	Hole $\Phi = \frac{L + W}{2}$	Φ > 1.0mm	Reject			
Minor	Position shift $Y \xrightarrow{-\frac{1}{2}} \xrightarrow{-\frac{1}{2}$	Y > 1/3D	Reject			
WITIO		X > 1/2Z	Reject			

5. Screw

Defect	Inspection Item	Inspection Standards			
Major	Screw missing/loosen		Reject		
Minor	Screw oxidation	Any rust	Reject		
Minor	Screw deformation	Difficult to accept screw driver	Reject		

6. Heat-seal TCP FPC

Defect	Inspection Item	Inspection Standards		
Major	Scratch expose conductive layer		Reject	
Minor	HS Hole $\Phi = \frac{L + W}{2}$	⊕> 0.5mm	Reject	
Major	Adhesion strength	Less than the specification	Reject	
Minor	Position shift $ \begin{array}{c c} & & & \\ & &$	Y > 1/3D	Reject	
MILIO		X > 1/2Z	Reject	
Major	Conductive line break		Reject	

7. LED Solve Backing Protective Film and Others

Defect	Inspection Item	Inspection Standards			
		Acceptable number of units			
		⊕ <u><</u> 0.10mm	Ignore		
	LED dirty, prick	0.10<⊕ <u><</u> 0.15mm	2		
Minor		0.15<⊕ <u><</u> 0.2mm	1		
		Φ >0.2mm	0		
		The distance between any two spots should be \geq 5mm Any spot/dot/void outside of viewing area is acceptable			
Minor	Protective film tilt	Not fully cover LCD			
Major	COG coating	Not fully cover ITO circuit	Reject		

8. Electric Inspection

	Defect	Inspection Item	Inspection Standards	
Ē	Major	Short		Reject
	Major	Open		Reject

9. Inspection Specification of LCD

Defect	Inspect Item		Inspection Standards							
		* Glass Scratch	W	<u> </u>		0.03	0.0)3 <w<u><0.0</w<u>	5 V	V>0.05
		* Polarizer Scratch	L		L	<5		L<3		Any
Minor	Linear Defect	* Fiber and Linear	ACC. 1 NO.			1	ļ	Reject		
		material	Note	L is the length and W is				s the width of the defect		
		* Foreign material		Φ<u><</u>0 .		0.1<⊅ <u><</u> 0	.15 0).15<Φ <u><</u> 0.	2	Φ>0.2
	Die els Creat	between glass and		3EA	m^2	2		1		0
Minor	Black Spot and Polarizer Pricked	polarizer or glass and glass * Polarizer hole or protuberance by external force	Note	100mm² 2 1 Φ is the average diameter of the d Distance between two defects > 10						
		* Unobvious			Φ <u><</u> (0.3	0.3<	< ⊕<u><</u>0.5	0.	5 <Φ
	White Spot	transparant foreign material between	NO.	3EA	/ 10	00mm ²		1	1 0	
Minor	and Bubble in polarizer	glass and glass or glass and polarizer * Air protuberance between polarizer and glass	Note	Φ is the average diameter of the defect Distance between two defects > 10mm.						
	Segment Defect		Φ	Φ <u><</u> 0.1	10	0.10<⊅ <u><</u> 0.20 0		0.20<⊅ <u><</u>	<u>0.25</u>	Φ> 0.2
			ACC. NO.	3EA 100mr	/ m²	2		1		0
Minor				W is more than 1/2 segment width Reject						
			Note	$\Phi = \frac{L + W}{2}$ Distance between two defect is 10mm						
	Protuberant Segment		Φ	Φ <u><</u> 0.1	10	0.10<Φ <u><</u> 0.20 0.20<Φ <u><</u> 0.25		Φ>0.2		
			w	Glue	9	W <u><</u> 1/2 Seg W <u><</u> 0.2		W <u><</u> 1/2 Seg W<0.2		Ignore
Minor		Φ = (L + W) / 2	ACC. NO.	3EA 100mr	/ m²	2		1		0
			1. Segment							
			E	B B <u><</u> 0.4mm		0.4mm	0.4 <b<u><1.0mm B</b<u>		B >1	.0mm
	Assembly		B-	A B-A<		A<1/2B	B B-A<0.2		B-A	<0.25
Minor	Mis-alignment	HB-H -4 H-A		dge Acceptable Acceptable Accep			eptable			
			2. Dot	t Matrix				1		
			Defo	ormation>2° Re				Reject		
Minor	Stain on LCD Panel Surface		Accept when stains can be wiped lightly with a sof cloth or a similar one. Otherwise, judged according to the above items: "Black spot" and "White Spot"							

8. RELIABILITY

NO.	ltem	Condition	Criterion		
1	High Temperature Operating	70℃, 96Hrs			
2	Low Temperature Operating	-20℃, 96Hrs			
3	High Humidity	60℃, 90%RH, 96Hrs			
4	High Temperature Storage	80℃, 96Hrs			
5	Low Temperature Storage	-30℃, 96Hrs	No defect in cosmetic and		
	Vibration	Random wave	operational function allowable.		
6		10 ~ 100Hz	Total current Consumption should be below double of initial value.		
0		Acceleration: 2g			
		2 Hrs per direction(X,Y,Z)			
	Thermal Shock	-20℃ to 25℃ to70℃			
7		(60Min) (5Min) (60Min)			
		16Cycles			
	ESD Testing	Contract Discharge Voltage:			
8		+1 ~ 5kV and -1 ~ -5kV	There will be discharged ten times at every discharging voltage		
		Air Discharge Voltage: +1 ~ 8kV and -1 ~ -8kV	cycle. The voltage gap is 1kV.		

Note: 1) Above conditions are suitable for our company standard products.

2) For restrict products, the test conditions listed as above must be revised.

9. HANDLING PRECAUTION

(1) Mounting Method

The panel of the LCD Module consists of two thin glass plates with polarizers which easily get damaged since the Module is fixed by utilizing fitting holes in the printed circuit board. Extreme care should be taken when handling the LCD Modules.

(2) Caution of LCD handling & cleaning

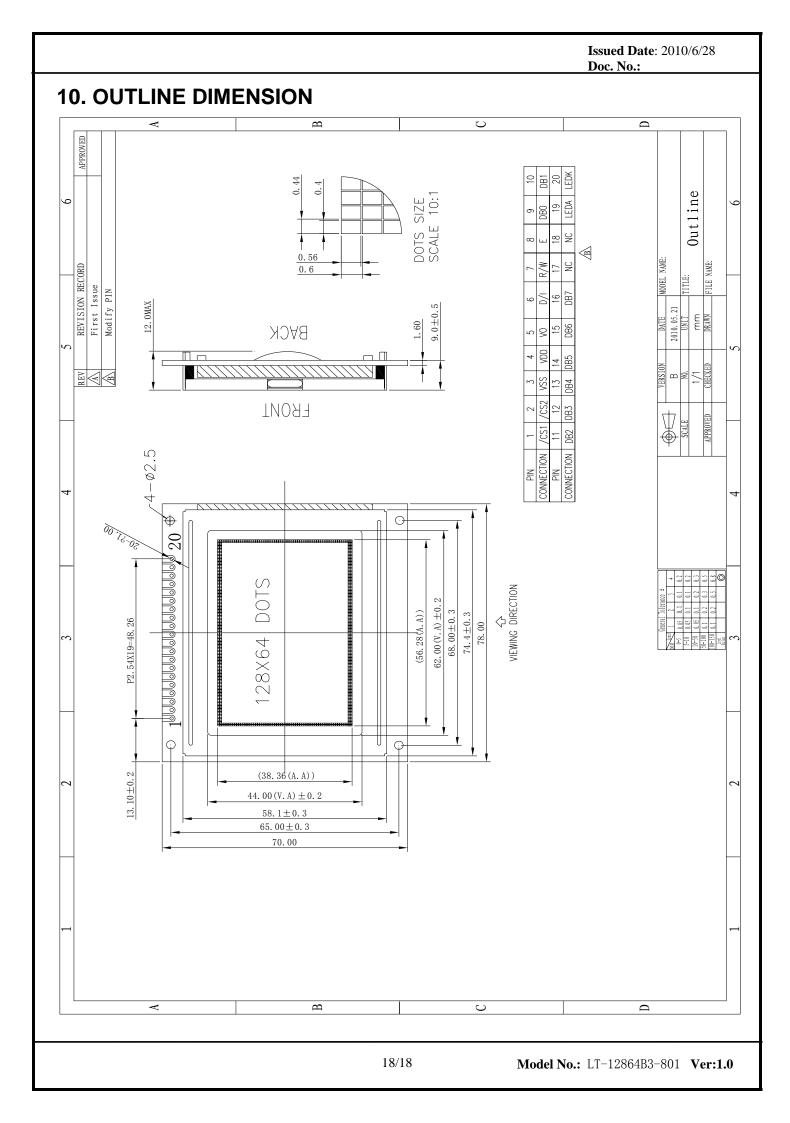
When cleaning the display surface, use soft cloth with solvent (recommended below) and wipe lightly.

- Isopropyl alcohol
- Ethyl alcohol
- Trichloro trifloro thane

Do not wipe the display surface with dry or hard materials that will damage the polarizer surface. Do not use the following solvent:

- Water- Ketone- Aromatics
- (3) Caution against static charge

The LCD Module use C-MOS LSI drivers, so we recommend that you connect any unused input terminal to VDD or VSS, do not input any signals before power is turned on. And ground your body, Work/assembly table. And assembly equipment to protect against static electricity.


- (4) Packaging
 - Modules use LCD elements, and must be treated as such. Avoid intense shock and falls from a height.
 - To prevent modules from degradation. Do not operate or store them exposed directly to sunshine or high temperature/humidity.
- (5) Caution for operation
 - It is indispensable to drive LCD's within the specified voltage limit since the higher voltage than the limit shorten LCD life. An electrochemical reaction due to direct current causes LCD deterioration, Avoid the use of direct current drive.
 - Response time will be extremely delayed at lower temperature than the operating temperature range and on the other hand at higher temperature LCD's show dark color in them. However those phenomena do not mean malfunction or out of order with LCD's. Which will come back in the specified operating temperature range.
 - If the display area is pushed hard during operation, some font will be abnormally displayed but it resumes normal condition after turning off once.
 - A slight dew depositing on terminals is a cause for electro-chemical reaction resulting in terminal open circuit.

Usage under the relative condition of 40°C, 50%RH or less is reequired.

(6) Storage

- In the case of storing for a long period of time (for instance.) For years) for the purpose or replacement use, The following ways are recommended.
 - Storage in a polyethylene bag with sealed so as not to enter fresh air outside in it, And with no desiccant.
- Placing in a dark place where neither exposure to direct sunlight nor light is. Keeping temperature in the specified storage temperature range.
- Storing with no touch on polarizer surface by the anything else. (It is recommended to store them as they have been contained in the inner container at the time of delivery)
- (7) Safety
 - It is recommendable to crash damaged or unnecessary LCD into pieces and wash off liquid crystal by using solvents such as acetone and ethanol. Which should be burned up later.

- When any liquid crystal leaked out of a damaged glass cell comes in contac with your hands, please wash it off well with soap and wate

